Generating Optimized Guessing Candidates toward Better Password Cracking from Multi-Dictionaries Using Relativistic GAN

Author:

Nam SungyupORCID,Jeon SeunghoORCID,Moon JongsubORCID

Abstract

Despite their well-known weaknesses, passwords are still the de-facto authentication method for most online systems. Due to its importance, password cracking has been vibrantly researched both for offensive and defensive purposes. Hashcat and John the Ripper are the most popular cracking tools, allowing users to crack millions of passwords in a short time. However, their rule-based cracking has an explicit limitation of depending on password-cracking experts to come up with creative rules. To overcome this limitation, a recent trend has been to apply machine learning techniques to research on password cracking. For instance, state-of-the-art password guessing studies such as PassGAN and rPassGAN adopted a Generative Adversarial Network (GAN) and used it to generate high-quality password guesses without knowledge of password structures. However, compared with the probabilistic context-free grammar (PCFG), rPassGAN shows inferior password cracking performance in some cases. It was also observed that each password cracker has its own cracking space that does not overlap with other models. This observation led us to realize that an optimized candidate dictionary can be made by combining the password candidates generated by multiple password generation models. In this paper, we suggest a deep learning-based approach called REDPACK that addresses the weakness of the cutting-edge cracking tools based on GAN. To this end, REDPACK combines multiple password candidate generator models in an effective way. Our approach uses the discriminator of rPassGAN as the password selector. Then, by collecting passwords selectively, our model achieves a more realistic password candidate dictionary. Also, REDPACK improves password cracking performance by incorporating both the generator and the discriminator of GAN. We evaluated our system on various datasets with password candidates composed of symbols, digits, upper and lowercase letters. The results clearly show that our approach outperforms all existing approaches, including rule-based Hashcat, GAN-based PassGAN, and probability-based PCFG. The proposed model was also able to reduce the number of password candidates by up to 65%, with only 20% cracking performance loss compared to the union set of passwords cracked by multiple-generation models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Password Strength: An Empirical Analysis

2. John the Ripper Password Crackerhttp://www.openwall.com/john/

3. Hashcat Advanced Password Recoveryhttps://hashcat.net/wiki/

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PassRVAE: Improved Trawling Attacks via Recurrent Variational Autoencoder;Proceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology;2024-01-19

2. A Systematic Review on Password Guessing Tasks;Entropy;2023-09-07

3. PGTCN: A novel password-guessing model based on temporal convolution network;Journal of Network and Computer Applications;2023-04

4. An Overview of the Present and Future of User Authentication;2022 4th IEEE Middle East and North Africa COMMunications Conference (MENACOMM);2022-12-06

5. LPG–PCFG: An Improved Probabilistic Context- Free Grammar to Hit Low-Probability Passwords;Sensors;2022-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3