Abstract
In the attempt to respond to market demands, new techniques for wireless communication systems have been proposed to ensure, to all active users that are sharing the same network cell, an increased quality of service, regardless of any environmental factors, such as their position within the cell, time, space, climate, and noise. One example is the nonorthogonal multiple access (NOMA) technique, proposed within the 5G standard, known for supporting a massive connectivity and a more efficient use of radio resources. This paper presents two new sets of complex codes— multiple-user shared-access (MUSA) and extended MUSA (EMUSA), and an algorithm of allocation such that the intercorrelation should be as reduced as possible that can be used in MUSA for 5G NOMA-based technique scheme. Also, it analyzes the possibility of creating complex codes starting from PN (cPN), which is a novel idea proposed in this paper, whose results are promising with respect to the overall system performances. First, a description of the basic principles of MUSA are presented; next, the description of the proposed system will be provided, whose performance will be tested using Monte Carlo MATLAB simulations based on bit error rate (BER) versus signal-to-noise ratio (SNR). The system performances are evaluated in different scenarios and compared with classical code division multiple access (CDMA) having the following system parameters in sight: the number of antennas at the receiver side and the number of active users.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献