Author:
Cho Jong Hoon,Im Ji Sun,Bai Byong Chol
Abstract
The present study was conducted to investigate changes in the thermal conductivity of petroleum pitch-based carbon molded bodies prepared by anisotropic (uniaxial) molding under different molding pressures. The carbon molded bodies were prepared using needle coke and petroleum-based binder pitch polymers (softening point: 150 ℃). Green blocks prepared under high molding pressure showed a higher particle orientation value up to 16.4 μm. Graphite blocks, prepared by graphitizing the green blocks at 2800 ℃ showed a similar trend. The pores in the carbon molded body were filled with low boiling point substances, generated by the thermal treatment of the binder pitch polymer or air that could not be discharged during the molding procedure. Therefore, when phonons encountered a pore, phonon scattering, rather than phonon transport, occurred, and thus the heat transport from the hot zone to a cold zone became slow. As a result, although the particle orientation was a little higher in the B_10-G sample than in the B_20-G sample (in the error range), the thermal conductivity was higher in the B_20-G sample, which may be because the B_10-G sample had a higher porosity than the B_20-G sample.
Funder
Korea Evaluation Institute of Industrial Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献