Naming in Multichannel with Beeps in the Strong Model

Author:

Aldawsari Layla S.,Altman Tom

Abstract

In this paper, a system of anonymous processes is considered that communicates with beeps through multiple channels in a synchronous communication model. In beeping channels, processes are limited to hearing either a beep or a silence from the channel with no collision detection. A strong model is assumed in which a process can beep on any single channel and listen on any specific channel during a single round. The goal is to develop distributed naming algorithms for two models where the number of processes is either known or unknown. A Las Vegas algorithm was developed for naming anonymous processes when the number of processes is known. This algorithm has an optimal time complexity of O(nlogn) rounds and uses O(nlogn) random bits, where n is the number of processes for the largest group. For the model with an unknown number of processes, a Monte Carlo algorithm was developed, which has an optimal running time of O(nlogn) rounds and a probability of success that is at least 1−12Ω(logn). The algorithms solve the naming problem in new models where processes communicate through multiple channels.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Naming Processes in Multichannels with Beeps in the Weak Model;Lecture Notes in Networks and Systems;2021-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3