Abstract
In this paper, we test three prototypes with different characteristics for controlling the quantity of organic fertiliser in the agricultural irrigation system. We use 0.4 mm of copper diameter, distributing in different layers, maintaining the relation of 40 spires for powered coil and 80 for the induced coil. Moreover, we develop sensors with 8, 4, and 2 layers of copper. The coils are powered by a sine wave of 3.3 V peak to peak, and the other part is induced. To verify the functioning of this sensor, we perform several simulations with COMSOL Multiphysics to verify the magnetic field created around the powered coil, as well as the electric field, followed by a series of tests, using six samples between the 0 g/L and 20 g/L of organic fertiliser, and measure their conductivity. First, we find the working frequency doing a sweep for each prototype and four configurations. In this case, for all samples, making a sweep between 10 kHz and 300 kHz. We obtained that in prototype 1 (P1) (coil with 8 layers) the working frequency is around 100 kHz, in P2 (coil with 4 layers) around 110 kHz, and for P3 (coil with 2 layers) around 140 kHz. Then, we calibrate the prototypes measuring the six samples at four different configurations for each sensor to evaluate the possible variances. Likewise, the measures were taken in triplicate to reduce the possible errors. The obtained results show that the maximum difference of induced voltage between the lowest and the highest concentration is for the P2/configuration 4 with 1.84 V. Likewise, we have obtained an optimum correlation of 0.997. Then, we use the other three samples to verify the optimum functioning of the obtained calibrates. Moreover, the ANOVA simple procedure is applied to the data of all prototypes, in the working frequency of each configuration, to verify the significant difference between the values. The obtained results indicate that there is a significate difference between the average of concentration (g/L) and the induced voltage, and another with a level of 5% of significance. Finally, we compare all of the tested prototypes and configurations, and have determined that prototype three with configuration 1 is the best device to be used as a fertiliser sensor in water.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference42 articles.
1. World Agriculture 2030: Main Findingshttp://www.fao.org/english/newsroom/news/2002/7833-en.html
2. Soil Biodiversity and ecosystem functioning;Bardgett,2017
3. Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo
4. Energy efficiency in fertiliser production and use. Efficient Use and Conservation of Energy;Gellings,2016
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献