Image Analysis Applications for Building Inter-Story Drift Monitoring

Author:

Yang Yuan-SenORCID,Xue Qiang,Chen Pin-Yao,Weng Jian-Huang,Li Chi-Hang,Liu Chien-Chun,Chen Jing-Syu,Chen Chao-Tsun

Abstract

Structural health monitoring techniques have been applied to several important structures and infrastructure facilities, such as buildings, bridges, and power plants. For buildings, accelerometers are commonly used for monitoring the accelerations induced by ambient vibration to analyze the structural natural frequencies for further system identification and damage detection. However, due to the relatively high cost of the accelerometers and data acquisition systems, accelerometer-based structural health monitoring systems are challenging to deploy in general buildings. This study proposed an image analysis-based building deformation monitoring method that integrates a small single-board computer, computer vision techniques, and a single-camera multiple degree-of-freedom algorithm. In contrast to other vision-based systems that use multiple expensive cameras, this method is designed for a single camera configuration to simplify the installation and maintenance procedures for practical applications. It is designed to monitor the inter-story drifts and torsional responses between the ceiling and floor of a story that is being monitored in a building, aiming to maximize the monitored structural responses. A series of 1:10 reduced scale static and dynamic structural experiments demonstrated that the proposed method and the device prototype are capable of analyzing images and structural responses with an accuracy of 0.07 and 0.3 mm from the results of the static and dynamic experiments, respectively. As digital imaging technology has been developing dramatically, the accuracy and the sampling rates of this method can be improved accordingly with the development of the required hardware, making this method practically feasible for an increasing number of applications for building structural monitoring.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3