On a New Type of Combined Solar–Thermal/Cold Gas Propulsion System Used for LEO Satellite’s Attitude Control

Author:

Sandu Constantin,Silivestru Valentin,Cican Grigore,Șerbescu Horațiu,Tipa Traian,Totu Andrei,Radu Andrei

Abstract

This paper presents the development, construction and testing of a new type of solar–thermal propulsion system which can be used for low earth orbit (LEO) satellites. Currently, the vast majority of LEO satellites are fitted with a cold gas propulsion system. Although such a propulsion system is preferred, the service duration of an LEO satellite is limited by the amount of cold gas they carry onboard. In the case of the new type of solar–thermal propulsion system proposed in this paper, the cold gas is first transferred from the main tank in a cylindrical service tank/buffer tank which is placed in the focal line of a concave mirror. After the gas is heated by the solar light focused on the service tank by the concave mirror, it expands by opening the appropriate solenoid valve for the satellite’s attitude control. In this way the service duration of LEO satellite on orbit can increase by 2.5 times compared with a classic cold gas propulsion system. This is due to the propellant’s internal energy increase by the focused solar light. This paper also presents the results achieved by carrying out tests for the hot gas propulsion system in a controlled environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. ESA Space Debris Office, 2020, Space Debris by the Numbershttps://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers

2. The small orbital debris population and its impact on space activities and ecological safety

3. Rocket Propulsion Elements;Sutton,2001

4. Review of multimode space propulsion

5. A review of MEMS micropropulsion technologies for CubeSats and PocketQubes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3