A Novel Hybrid Model for Cantonese Rumor Detection on Twitter

Author:

Chen XinyuORCID,Ke Liang,Lu Zhipeng,Su Hanjian,Wang Haizhou

Abstract

The development of information technology and mobile Internet has spawned the prosperity of online social networks. As the world’s largest microblogging platform, Twitter is popular among people all over the world. However, as the number of users on Twitter increases, rumors have become a serious problem. Therefore, rumor detection is necessary since it can prevent unverified information from causing public panic and disrupting social order. Cantonese is a widely used language in China. However, to the best of our knowledge, little research has been done on Cantonese rumor detection. In this paper, we propose a novel hybrid model XGA (namely XLNet-based Bidirectional Gated Recurrent Unit (BiGRU) network with Attention mechanism) for Cantonese rumor detection on Twitter. Specifically, we take advantage of both semantic and sentiment features for detection. First of all, XLNet is employed to produce text-based and sentiment-based embeddings at the character level. Then we perform joint learning of character and word embeddings to obtain the words’ external contexts and internal structures. In addition, we leverage BiGRU and the attention mechanism to obtain important semantic features and use the Cantonese rumor dataset we constructed to train our proposed model. The experimental results show that the XGA model outperforms the other popular models in Cantonese rumor detection. The research in this paper provides methods and ideas for future work in Cantonese rumor detection on other social networking platforms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Rumor Identification in Microblogging Systems Based on Users’ Behavior

2. Snopeshttps://www.snopes.com

3. PolitiFacthttps://www.politifact.com

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3