Abstract
Fuzzy vector signature (FVS) is a new primitive where a fuzzy (biometric) data w is used to generate a verification key (VKw), and, later, a distinct fuzzy (biometric) data w′ (as well as a message) is used to generate a signature (σw′). The primary feature of FVS is that the signature (σw′) can be verified under the verification key (VKw) only if w is close to w′ in a certain predefined distance. Recently, Seo et al. proposed an FVS scheme that was constructed (loosely) using a subset-based sampling method to reduce the size of helper data. However, their construction fails to provide the reusability property that requires that no adversary gains the information on fuzzy (biometric) data even if multiple verification keys and relevant signatures of a single user, which are all generated with correlated fuzzy (biometric) data, are exposed to the adversary. In this paper, we propose an improved FVS scheme which is proven to be reusable with respect to arbitrary correlated fuzzy (biometric) inputs. Our efficiency improvement is achieved by strictly applying the subset-based sampling method used before to build a fuzzy extractor by Canetti et al. and by slightly modifying the structure of the verification key. Our FVS scheme can still tolerate sub-linear error rates of input sources and also reduce the signing cost of a user by about half of the original FVS scheme. Finally, we present authentication protocols based on fuzzy extractor and FVS scheme and give performance comparison between them in terms of computation and transmission costs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献