An Improved Fuzzy Vector Signature with Reusability

Author:

Lim IlhwanORCID,Seo MinhyeORCID,Lee Dong Hoon,Park Jong HwanORCID

Abstract

Fuzzy vector signature (FVS) is a new primitive where a fuzzy (biometric) data w is used to generate a verification key (VKw), and, later, a distinct fuzzy (biometric) data w′ (as well as a message) is used to generate a signature (σw′). The primary feature of FVS is that the signature (σw′) can be verified under the verification key (VKw) only if w is close to w′ in a certain predefined distance. Recently, Seo et al. proposed an FVS scheme that was constructed (loosely) using a subset-based sampling method to reduce the size of helper data. However, their construction fails to provide the reusability property that requires that no adversary gains the information on fuzzy (biometric) data even if multiple verification keys and relevant signatures of a single user, which are all generated with correlated fuzzy (biometric) data, are exposed to the adversary. In this paper, we propose an improved FVS scheme which is proven to be reusable with respect to arbitrary correlated fuzzy (biometric) inputs. Our efficiency improvement is achieved by strictly applying the subset-based sampling method used before to build a fuzzy extractor by Canetti et al. and by slightly modifying the structure of the verification key. Our FVS scheme can still tolerate sub-linear error rates of input sources and also reduce the signing cost of a user by about half of the original FVS scheme. Finally, we present authentication protocols based on fuzzy extractor and FVS scheme and give performance comparison between them in terms of computation and transmission costs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3