Abstract
Miniaturized flexible microelectrode arrays are desirable for small-area surface electromyography (sEMG) to detect the electrical activity generated by muscles in a specific area of the body. Here, we present a flexible 8-channel microelectrode array with electrodes of diameter 150–300 μm for small-area sEMG recordings. The microelectrode arrays based on a flexible Parylene C substrate recorded the sEMG signals from a curved skin surface with a maximum signal-to-noise ratio (SNR) of 21.4 dB. The sEMG signals recorded from a small area of 17671–59325 μm2 showed a clear distinction between the signal and noise. Further, the sEMG data were analyzed in the frequency domain by converting the signals via fast Fourier transform (FFT), and it was verified that the proposed microelectrode could reliably record multichannel sEMGs over a small area. Moreover, a maximum voluntary contraction (MVC) experiment was performed to confirm the recording capability of the microelectrode array, which showed consistency with the previous reports. Finally, we demonstrated the effects of the electrode size by comparing the results for two different electrode sizes. When the electrode size was increased 3.37 times, the root-mean-square value of the amplitude (Vrms) increased 2.64 times, consequently increasing the SNR from 16.9 to 21.4 dB. This study demonstrates the expanded utility of Parylene-based flexible microelectrode arrays.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献