Abstract
Advanced driver assistance systems (ADAS) are becoming increasingly prevalent. The tuning of these systems would benefit from a deep knowledge of human behaviour, especially during emergency manoeuvres; however, this does not appear to commonly be the case. We introduced an instrumented steering wheel (ISW) to measure three components of force and three components of the moment applied by each hand, separately. Using the ISW, we studied the kick plate manoeuvre. The kick plate manoeuvre is an emergency manoeuvre to recover a lateral disturbance inducing a spin. The drivers performed the manoeuvre either keeping two hands on the steering wheel or one hand only. In both cases, a few instants after the lateral disturbance induced by the kick plate occurred, a torque peak was applied at the ISW. Such a torque appeared to be unintentional. The voluntary torque on the ISW occurred after the unintentional torque. The emergency manoeuvre performed with only one hand was quicker, since, if two hands were used, an initial fighting of the two hands against each other was present. Therefore, we propose to model the neuro-muscular activity in driver models to consider the involuntary muscular phenomena, which has a relevant effect on the vehicle dynamic response.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献