Nanotechnology-Based Delivery Systems for Antimicrobial Peptides

Author:

Fadaka Adewale OluwaseunORCID,Sibuyi Nicole Remaliah SamanthaORCID,Madiehe Abram MadimabeORCID,Meyer MervinORCID

Abstract

Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3