Skin Substitute Preparation Method Induces Immunomodulatory Changes in Co-Incubated Cells through Collagen Modification

Author:

Holl Jordan,Pawlukianiec CezaryORCID,Corton Ruiz Javier,Groth DawidORCID,Grubczak KamilORCID,Hady Hady Razak,Dadan Jacek,Reszec Joanna,Czaban Slawomir,Kowalewski Cezary,Moniuszko Marcin,Eljaszewicz AndrzejORCID

Abstract

Chronic ulcerative and hard-healing wounds are a growing global concern. Skin substitutes, including acellular dermal matrices (ADMs), have shown beneficial effects in healing processes. Presently, the vast majority of currently available ADMs are processed from xenobiotic or cadaveric skin. Here we propose a novel strategy for ADM preparation from human abdominoplasty-derived skin. Skin was processed using three different methods of decellularization involving the use of ionic detergent (sodium dodecyl sulfate; SDS, in hADM 1), non-ionic detergent (Triton X-100 in hADM 2), and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We next evaluated the immunogenicity and immunomodulatory properties of this novel hADM by using an in vitro model of peripheral blood mononuclear cell culture, flow cytometry, and cytokine assays. We found that similarly sourced but differentially processed hADMs possess distinct immunogenicity. hADM 1 showed no immunogenic effects as evidenced by low T cell proliferation and no significant change in cytokine profile. In contrast, hADMs 2 and 3 showed relatively higher immunogenicity. Moreover, our novel hADMs exerted no effect on T cell composition after three-day of coincubation. However, we observed significant changes in the composition of monocytes, indicating their maturation toward a phenotype possessing anti-inflammatory and pro-angiogenic properties. Taken together, we showed here that abdominoplasty skin is suitable for hADM manufacturing. More importantly, the use of SDS-based protocols for the purposes of dermal matrix decellularization allows for the preparation of non-immunogenic scaffolds with high therapeutic potential. Despite these encouraging results, further studies are needed to evaluate the beneficial effects of our hADM 1 on deep and hard-healing wounds.

Funder

ImPRESS” project of the European Union's Horizon 2020 research and innovation programs under the Marie Skłodowska-Curie grant

National Centre for Research and Development

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3