Compartmentalized Polymeric Nanoparticles Deliver Vancomycin in a pH-Responsive Manner

Author:

Ural Merve Seray,Menéndez-Miranda Mario,Salzano Giuseppina,Mathurin JérémieORCID,Aybeke Ece Neslihan,Deniset-Besseau Ariane,Dazzi Alexandre,Porcino Marianna,Martineau-Corcos Charlotte,Gref RuxandraORCID

Abstract

Vancomycin (VCM) is a last resort antibiotic in the treatment of severe Gram-positive infections. However, its administration is limited by several drawbacks such as: strong pH-dependent charge, tendency to aggregate, low bioavailability, and poor cellular uptake. These drawbacks were circumvented by engineering pH-responsive nanoparticles (NPs) capable to incorporate high VCM payload and deliver it specifically at slightly acidic pH corresponding to infection sites. Taking advantage of peculiar physicochemical properties of VCM, here we show how to incorporate VCM efficiently in biodegradable NPs made of poly(lactic-co-glycolic acid) and polylactic acid (co)polymers. The NPs were prepared by a simple and reproducible method, establishing strong electrostatic interactions between VCM and the (co)polymers’ end groups. VCM payloads reached up to 25 wt%. The drug loading mechanism was investigated by solid state nuclear magnetic resonance spectroscopy. The engineered NPs were characterized by a set of advanced physicochemical methods, which allowed examining their morphology, internal structures, and chemical composition on an individual NP basis. The compartmentalized structure of NPs was evidenced by cryogenic transmission electronic microscopy, whereas the chemical composition of the NPs’ top layers and core was obtained by electron microscopies associated with energy-dispersive X-ray spectroscopy. Noteworthy, atomic force microscopy coupled to infrared spectroscopy allowed mapping the drug location and gave semiquantitative information about the loadings of individual NPs. In addition, the NPs were stable upon storage and did not release the incorporated drug at neutral pH. Interestingly, a slight acidification of the medium induced a rapid VCM release. The compartmentalized NPs could find potential applications for controlled VCM release at an infected site with local acidic pH.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3