Investigating the Contribution of Drug-Metabolizing Enzymes in Drug-Drug Interactions of Dapivirine and Miconazole

Author:

Valicherla Guru RaghavendraORCID,Graebing Phillip,Zhang JunmeiORCID,Zheng Ruohui,Nuttall JeremyORCID,Silvera Peter,Rohan Lisa Cencia

Abstract

Dapivirine (DPV) is a potent NNRTI used to prevent the sexual transmission of HIV. In a phase 1 trial (IPM 028), the concomitant use of a DPV vaginal ring and an antifungal miconazole (MIC) vaginal capsule was found to increase the systemic exposure to DPV in women, suggesting a potential for drug-drug interactions. This study’s objective was to investigate the mechanism of DPV-MIC interactions using drug-metabolizing enzymes (DMEs; CYPs and UGTs) that are locally expressed in the female reproductive tract (FRT). In vitro studies were performed to evaluate the metabolism of DPV and its inhibition and induction potential with DMEs. In addition, the impact of MIC on DPV metabolism and the inhibitory potential of DPV with DMEs were studied. Our findings suggest that DPV is a substrate of CYP1A1 and CYP3A4 enzymes and that MIC significantly decreased the DPV metabolism by inhibiting these two enzymes. DPV demonstrated potent inhibition of CYP1A1 and moderate/weak inhibition of the six CYP and eight UGT enzymes evaluated. MIC showed potent/moderate inhibition of seven CYP enzymes and weak/no inhibition of eight UGT enzymes. The combination of DPV and MIC showed potent inhibition of seven CYP enzymes (1A1, 1A2, 1B1, 2B6, 2C8, 2C19, and 3A4) and four UGT enzymes (1A3, 1A6, 1A9, and 2B7). DPV was not an inducer of CYP1A2, CYP2B6, and CYP3A4 enzymes in primary human hepatocytes. Therefore, the increased systemic concentrations of DPV observed in IPM 028 were likely due to the reduced metabolism of DPV because of CYP1A1 and CYP3A4 enzymes inhibition by MIC in the FRT.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3