Author:
Winter Stephen J.,Miller Hunter A.,Steinbach-Rankins Jill M.
Abstract
A novel multicellular model composed of epithelial ovarian cancer and fibroblast cells was developed as an in vitro platform to evaluate nanovector delivery and ultimately aid the development of targeted therapies. We hypothesized that the inclusion of peptide-based scaffold (PuraMatrix) in the spheroid matrix, to represent in vivo tumor microenvironment alterations along with metastatic site conditions, would enhance spheroid cell growth and migration and alter nanovector transport. The model was evaluated by comparing the growth and migration of ovarian cancer cells exposed to stromal cell activation and tissue hypoxia. Fibroblast activation was achieved via the TGF-β1 mediated pathway and tissue hypoxia via 3D spheroids incubated in hypoxia. Surface-modified nanovector transport was assessed via fluorescence and confocal microscopy. Consistent with previous in vivo observations in ascites and at distal metastases, spheroids exposed to activated stromal microenvironment were denser, more contractile and with more migratory cells than nonactivated counterparts. The hypoxic conditions resulted in negative radial spheroid growth over 5 d compared to a radial increase in normoxia. Nanovector penetration attenuated in PuraMatrix regardless of surface modification due to a denser environment. This platform may serve to evaluate nanovector transport based on ovarian ascites and metastatic environments, and longer term, it provide a means to evaluate nanotherapeutic efficacy.
Funder
National Institutes of Health
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献