Immunological Analysis of Nodavirus Capsid Displaying the Domain III of Japanese Encephalitis Virus Envelope Protein

Author:

Kumar KivenORCID,Ong Hui Kian,Tan Wen SiangORCID,Arshad Siti Suri,Ho Kok LianORCID

Abstract

Japanese encephalitis virus (JEV) is the pathogen that causes Japanese encephalitis (JE) in humans and horses. Lethality of the virus was reported to be between 20–30%, of which, 30–50% of the JE survivors develop neurological and psychiatric sequelae. Attributed to the low effectiveness of current therapeutic approaches against JEV, vaccination remains the only effective approach to prevent the viral infection. Currently, live-attenuated and chimeric-live vaccines are widely used worldwide but these vaccines pose a risk of virulence restoration. Therefore, continuing development of JE vaccines with higher safety profiles and better protective efficacies is urgently needed. In this study, the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (CP) fused with the domain III of JEV envelope protein (JEV-DIII) was produced in Escherichia coli. The fusion protein (MrNV-CPJEV-DIII) assembled into virus-like particles (VLPs) with a diameter of approximately 18 nm. The BALB/c mice injected with the VLPs alone or in the presence of alum successfully elicited the production of anti-JEV-DIII antibody, with titers significantly higher than that in mice immunized with IMOJEV, a commercially available vaccine. Immunophenotyping showed that the MrNV-CPJEV-DIII supplemented with alum triggered proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer (NK) cells. Additionally, cytokine profiles of the immunized mice revealed activities of cytotoxic T-lymphocytes, macrophages, and NK cells, indicating the activation of adaptive cellular and innate immune responses mediated by MrNV-CPJEV-DIII VLPs. Induction of innate, humoral, and cellular immune responses by the MrNV-CPJEV-DIII VLPs suggest that the chimeric protein is a promising JEV vaccine candidate.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3