Cellular Toxicity Mechanisms and the Role of Autophagy in Pt(IV) Prodrug-Loaded Ultrasmall Iron Oxide Nanoparticles Used for Enhanced Drug Delivery

Author:

Gutiérrez-Romero L.ORCID,Rivas-García L.ORCID,Sánchez-González C.ORCID,Llopis J.ORCID,Blanco E.ORCID,Montes-Bayón M.ORCID

Abstract

Ultrasmall iron oxide nanoparticles (<10 nm) were loaded with cis-diamminetetrachloroplatinum (IV), a cisplatin (II) prodrug, and used as an efficient nanodelivery system in cell models. To gain further insight into their behavior in ovarian cancer cells, the level of cellular incorporation as well as the platination of mitochondrial and nuclear DNA were measured using inductively coupled plasma mass spectrometry (ICP-MS) strategies. Quantitative Pt results revealed that after 24 h exposure to 20 µM Pt in the form of the Pt(IV)-loaded nanoparticles, approximately 10% of the incorporated Pt was associated with nuclear DNA. This concentration increased up to 60% when cells were left to stand in drug-free media for 3 h. These results indicated that the intracellular reducing conditions permitted the slow release of cisplatin (II) from the cisplatin (IV)-loaded nanoparticles. Similar results were obtained for the platination of mitochondrial DNA, which reached levels up to 17,400 ± 75 ng Pt/ mg DNA when cells were left in drug-free media for 3 h, proving that this organelle was also a target for the action of the released cisplatin (II). The time-dependent formation of Pt-DNA adducts could be correlated with the time-dependent decrease in cell viability. Such a decrease in cell viability was correlated with the induction of apoptosis as the main route of cell death. The formation of autophagosomes, although observed upon exposure in treated cells, does not seem to have played an important role as a means for cells to overcome nanoparticles’ toxicity. Thus, the designed nanosystem demonstrated high cellular penetration and the “in situ” production of the intracellularly active cisplatin (II), which is able to induce cell death, in a sustained manner.

Funder

Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3