Towards the Development of a Female Animal Model of T1DM Using Hyaluronic Acid Nanocoated Cell Transplantation: Refinements and Considerations for Future Protocols

Author:

Zamboni Fernanda,Cengiz Ibrahim F.,Barbosa Ana M.,Castro Antonio G.,Reis Rui L.,Oliveira Joaquim M.ORCID,Collins Maurice N.ORCID

Abstract

Female mice (Black 6 strain) (C57BL/6) aged 6 weeks were subject to low dose streptozotocin (STZ) treatment for five consecutive days to mimic type 1 diabetes mellitus (T1DM) with insulitis. At two weeks after STZ injections, evaluation of the elevated glucose levels was used to confirm diabetes. The diabetic mice were then subject to the transplantation of pancreatic β-cells (MIN-6 line). Four groups of mice were studied. The first group was injected with saline-only acting as the placebo surgery control, also known as SHAM group, the second and third groups were injected with MIN-6 single cells and polyethylene glycol-modified dipalmitoyl-glycerol-phosphatidyl ethanolamine (PEG-DPPE) modified MIN-6 single cells (500 µg per 1.106 cells), respectively, while the fourth group was injected with hyaluronic acid (HA)-coated MIN-6 single cells (5 bilayers). At seven- and fourteen-days following transplantation, the mice were euthanised. The renal and pancreatic tissues were then collected and histologically analysed. The induction of diabetes in female mice, through five-consecutive daily STZ injections resulted in inconsistent glycaemic levels. Interestingly, this shows an incomplete diabetes induction in female mice, of which we attribute to sex dimorphism and hormonal interferences. Transplantation failure of free-floating encapsulated cells was unable to decrease blood glucose hyperglycaemia to physiological ranges. The result is attributed to deprived cell–cell interactions, leading to decreased β-cells functionality. Overall, we highlight the necessity of refining T1DM disease models in female subjects when using multiple low-dose STZ injections together with transplantation protocols. Considerations need to be made regarding the different developmental stages of female mice and oestrogen load interfering with pancreatic β-cells susceptibility to STZ. The use of pseudo islets, cell aggregates and spheroids are sought to improve transplantation outcome in comparison to free-floating single cells.

Funder

Irish Research Council

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3