Exploring Metabolic Pathways of Anamorelin, a Selective Agonist of the Growth Hormone Secretagogue Receptor, via Molecular Networking

Author:

Kwak Young Beom12ORCID,Seo Jeong In2,Yoo Hye Hyun2ORCID

Affiliation:

1. Korea Racing Authority, Gwachon 13822, Republic of Korea

2. Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea

Abstract

In this study, we delineated the poorly characterized metabolism of anamorelin, a growth hormone secretagogue receptor agonist, in vitro using human liver microsomes (HLM), based on classical molecular networking (MN) and feature-based molecular networking (FBMN) from the Global Natural Products Social Molecular Networking platform. Following the in vitro HLM reaction, the MN analysis showed 11 neighboring nodes whose information propagated from the node corresponding to anamorelin. The FBMN analysis described the separation of six nodes that the MN analysis could not achieve. In addition, the similarity among neighboring nodes could be discerned via their respective metabolic pathways. Collectively, 18 metabolites (M1–M12) were successfully identified, suggesting that the metabolic pathways involved were demethylation, hydroxylation, dealkylation, desaturation, and N-oxidation, whereas 6 metabolites (M13a*-b*, M14a*-b*, and M15a*-b*) remained unidentified. Furthermore, the major metabolites detected in HLM, M1 and M7, were dissimilar from those observed in the CYP3A4 isozyme assay, which is recognized to be markedly inhibited by anamorelin. Specifically, M7, M8, and M9 were identified as the major metabolites in the CYP3A4 isozyme assay. Therefore, a thorough investigation of metabolism is imperative for future in vivo studies. These findings may offer prospective therapeutic opportunities for anamorelin.

Funder

Horse Industry Research Center of the Korea Racing Authority

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3