In-Line Aerosol Therapy via Nasal Cannula during Adult and Paediatric Normal, Obstructive, and Restrictive Breathing

Author:

Mac Giolla Eain Marc1ORCID,MacLoughlin Ronan123ORCID

Affiliation:

1. Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland

2. School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland

3. School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland

Abstract

High-flow nasal oxygen therapy is being increasingly adopted in intensive and home care settings. The concurrent delivery of aerosolised therapeutics allows for the targeted treatment of respiratory illnesses. This study examined in-line aerosol therapy via a nasal cannula to simulated adult and paediatric models with healthy, obstructive and restrictive lung types. The Aerogen Solo vibrating mesh nebuliser was used in combination with the InspiredTM O2FLO high-flow therapy system. Representative adult and paediatric head models were connected to a breathing simulator, which replicated several different states of lung health. The aerosol delivery was quantified at the tracheal level using UV-spectrophotometry. Testing was performed at a range of supplemental gas flow rates applicable to both models. Positive end-expiratory pressure was measured pre-, during and post-nebulisation. The increases in supplemental gas flow rates resulted in a decrease in aerosol delivery, irrespective of lung health. Large tidal volumes and extended inspiratory phases were associated with the greatest aerosol delivery. Gas flow to inspiratory flow ratios of 0.29–0.5 were found to be optimum for aerosol delivery. To enhance aerosol delivery to patients receiving high-flow nasal oxygen therapy, respiratory therapists should keep supplemental gas-flow rates below the inspiratory flow of the patient.

Funder

Aerogen Ltd., Galway, Ireland

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3