Effect of E. cava and C. indicum Complex Extract on Phorbol 12-Myristate 13-Acetate (PMA)-Stimulated Inflammatory Response in Human Pulmonary Epithelial Cells and Particulate Matter (PM)2.5-Induced Pulmonary Inflammation in Mice

Author:

Lee Sung-Gyu1,Park Chan-Hwi1ORCID,Kang Hyun1

Affiliation:

1. Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungnam, Republic of Korea

Abstract

This study explores the potential of a natural composite formulation known as ED, consisting of Ecklonia cava (E. cava, family: Lessoniaceae) and Chrysanthemum indicum Linne (C. indicum, family: Asteraceae), in alleviating lung inflammation induced by fine particulate matter (PM2.5). Initial assessments confirmed that neither ED nor one of its components, dieckol, exhibited cytotoxic effects on A549 cells. Subsequently, the impact of ED and dieckol on MUC5AC gene expression in A549 cells stimulated by phorbol 12-myristate 13-acetate (PMA) was investigated, revealing promising results that demonstrated a dose-dependent inhibition of MUC5AC gene expression. The study also delves into the underlying mechanisms, demonstrating that ED and dieckol effectively suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which are known to be involved in the regulation of MUC5AC gene expression. In in vivo experiments using a PM2.5-induced pulmonary inflammation mouse model, the research findings showed that ED mitigated cellular accumulation in the airways, leading to a significant reduction in the total cell count in bronchoalveolar lavage fluid (BALF). Moreover, ED exhibited protective effects against PM2.5-induced pulmonary damage, characterized by reduced inflammatory cell infiltration and decreased mucus secretion in pulmonary tissues. Additionally, ED’s anti-inflammatory properties were evident in its ability to decrease the levels of key inflammatory cytokines, TNF-α and IL-6, both in the serum and lung tissue of the PM2.5-induced pulmonary inflammation mouse model. These findings suggest the potential of ED as a therapeutic agent for inflammatory respiratory diseases.

Funder

Ministry of Oceans and Fisheries, Republic of Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference44 articles.

1. Inhibitory effects of black ginseng on particulate matter-induced pulmonary injury;Lee;Am. J. Chin. Med.,2019

2. Health effects caused by particulate matter and guidelines for health care;Jo;Public Health Wkly. Rep.,2018

3. Respiratory Protective Effect of Salvia plebeia R. Br. extracts against ambient particulate matter-induced airway onflammation;Song;Korean J. Med. Crop Sci.,2017

4. Diesel exhaust particle induction of IL-17A contributes to severe asthma;Brandt;J. Allergy Clin. Immunol.,2013

5. Airway smooth muscle in the pathophysiology and treatment of asthma;Doeing;J. Appl. Physiol.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3