The Impact of Silver Nanoparticle-Induced Photothermal Therapy and Its Augmentation of Hyperthermia on Breast Cancer Cells Harboring Intracellular Bacteria

Author:

Liu Sijia1ORCID,Phillips Spencer12,Northrup Scott1,Levi Nicole12

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA

2. School of Biomedical Engineering and Sciences, Wake Forest/Virginia Tech, Winston-Salem, NC 24061, USA

Abstract

Breast cancer can harbor intracellular bacteria, which may have an impact on metastasis and therapeutic responses. Silver nanoparticles are FDA-approved for their antimicrobial potential, plus they have pleiotropic benefits for eradicating cancer cells. In the current work we synthesized photothermal silver nanoparticles (AgNPs) with an absorption at 800 nm for heat generation when exposed to near-infrared laser irradiation. Breast cell lines MCF 10A, MCF7, and MDA MB 231 were infected with Pseudomonas aeruginosa, and their response to AgNPs, heat, or photothermal therapy (PTT) was evaluated. The results demonstrate that the application of a brief heating of cells treated with AgNPs offers a synergistic benefit in killing both infected and non-infected cells. Using 10 µg/mL of AgNPs plus laser stimulation induced a temperature change of 12 °C, which was sufficient for reducing non-infected breast cells by 81–94%. Infected breast cells were resistant to PTT, with only a reduction of 45–68%. In the absence of laser stimulation, 10 µg/mL of AgNPs reduced breast cell populations by 10–65% with 24 h of exposure. This concentration had no impact on the survival of planktonic bacteria with or without laser stimulation, although infected breast cells had a 42–90% reduction in intracellular bacteria. Overall, this work highlights the advantages of AgNPs for the generation of heat, and to augment the benefits of heat, in breast cancer cells harboring intracellular infection.

Funder

Department of Plastic and Reconstructive Surgery at Wake Forest School of Medicine

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3