Genistein Co-Amorphous Systems with Amino Acids: An Investigation into Enhanced Solubility and Biological Activity

Author:

Garbiec Ewa1ORCID,Rosiak Natalia1ORCID,Zalewski Przemysław1ORCID,Tajber Lidia2ORCID,Cielecka-Piontek Judyta1ORCID

Affiliation:

1. Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland

2. School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland

Abstract

Genistein, an isoflavone known for its antioxidant and antidiabetic effects, suffers from the drawback of low solubility. To overcome this limitation, co-amorphous systems were synthesized by incorporating amino acids that were chosen through computational methods. The confirmation of the amorphous state of lysine and arginine-containing systems was ascertained by X-ray powder diffraction. Subsequently, the characterization of these systems was extended by employing thermo-gravimetry, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The investigation also included an assessment of the physical stability of the samples during storage. The apparent solubility of the systems was studied in an aqueous medium. To evaluate the in vitro permeability through the gastrointestinal tract, the parallel artificial membrane permeability assay was employed. The biological properties of the systems were assessed with regard to their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl and cupric ion-reducing antioxidant capacity assays, as well as their ability to inhibit α-glucosidase. The systems’ glass transition temperatures were determined, and their homogeneity confirmed via differential scanning calorimetry analysis, while Fourier-transform infrared spectroscopy analysis provided data on molecular interactions. Stability was maintained for the entire 6-month storage duration. The co-amorphous system containing lysine displayed the most pronounced apparent solubility improvement, as well as a significant enhancement in antioxidant activity. Notably, both systems demonstrated superior α-glucosidase inhibition relative to acarbose, a standard drug for managing type 2 diabetes. The results indicate that co-amorphous systems with lysine and arginine have the potential to significantly enhance the solubility and biological activity of genistein.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3