Porous Deproteinized Natural Rubber Film Loaded with Silver Nanoparticles for Topical Drug Delivery

Author:

Pichayakorn Wiwat1ORCID,Maneewattanapinyo Pattwat2,Monton Chaowalit3ORCID,Dangmanee Nattakan4,Suksaeree Jirapornchai2ORCID

Affiliation:

1. Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

2. Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand

3. Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand

4. Faculty of Agro and Bio Industry, Cosmetic Technology and Dietary Supplement Products Program, Thaksin University, Ban Pa Phayom, Phatthalung 93210, Thailand

Abstract

The work demonstrated the use of natural rubber for topical drug delivery. The first objective was to fabricate a porous deproteinized natural rubber film loaded with silver nanoparticles. Characterizing and assessing its formulation was the second objective. Surface pH, mechanical properties, swelling ratio, erosion, moisture vapor transmission rate, scanning electron microscopy/energy dispersive X-ray analysis, and X-ray diffraction were evaluated. In vitro studies and antibacterial activity were assessed. It was discovered that silver nanoparticles could enter the film and that their concentrations ranged between 7.25 and 21.03 µg/cm2. The pH of the film’s surface was 7.00. The mechanical properties of the film with silver nanoparticle loading differed from the blank film. After adding silver nanoparticles, the film eroded faster than before, but the swelling ratio was not affected significantly. Increased time utilization had an impact on the moisture vapor transmission rate of the film. Silver nanoparticles released easily from the film while there was less permeability. The dead pig-ear skin had significant silver nanoparticle accumulation. Potent antibacterial activity was seen in the film containing silver nanoparticles. The silver nanoparticle-loaded film may be used as a wound dressing for a topical film that promotes wound healing while also protecting the area from infection.

Funder

Research Institute of Rangsit University

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3