Methods for Developing a Process Design Space Using Retrospective Data

Author:

Romero-Obon Miquel1,Pérez-Lozano Pilar23ORCID,Rouaz-El-Hajoui Khadija23ORCID,Suñé-Pou Marc23ORCID,Nardi-Ricart Anna23ORCID,Suñé-Negre Josep M.23,García-Montoya Encarna23ORCID

Affiliation:

1. Laboratorios ALMIRALL, Ctra. de Martorell, 41-61, 08740 Sant Andreu de la Barca, Spain

2. Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain

3. Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran via de l’Hospitalet, 199-203, 08090 Barcelona, Spain

Abstract

Prospectively planned designs of experiments (DoEs) offer a valuable approach to preventing collinearity issues that can result in statistical confusion, leading to misinterpretation and reducing the predictability of statistical models. However, it is also possible to develop models using historical data, provided that certain guidelines are followed to enhance and ensure proper statistical modeling. This article presents a methodology for constructing a design space using process data, while avoiding the common pitfalls associated with retrospective data analysis. For this study, data from a real wet granulation process were collected to pragmatically illustrate all the concepts and methods developed in this article.

Funder

Departament de Recerca i Universitats de la Generalitat de Catalunya

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference17 articles.

1. (2023, September 18). ICH Guideline Q8 (R2) on Pharmaceutical Development Step 5. 2009. EMA/CHMP/ICH/167068/2004. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf.

2. Retrospective quality by design r (QbD) for lactose production using historical process data and design of experiments;Galvisa;Comput. Ind.,2022

3. Retrospective Quality by Design (rQbD) applied to the optimization of orodispersible films;Silva;Int. J. Pharm.,2017

4. Scientific, statistical, practical, and regulatory considerations in design space development;Debevec;Drug Dev. Ind. Pharm.,2018

5. Improving tablet coating robustness by selecting critical process parameters from retrospective data;Ascaso;Pharm. Dev. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3