Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies

Author:

Kumar SunilORCID,Pooja ,Trotta Francesco,Rao Rekha

Abstract

Babchi (Psoralea corylifolia) oil is an important essential oil used in several traditional medicines to cure various disorders. This phytotherapeutic agent possesses a number of pharmacological activities including antibacterial, antifungal, antioxidant, anti-inflammatory, immunomodulatory, and antitumor factors. However, volatile nature, poor stability, and solubility of babchi oil (BO) restrict its pharmaceutical applications. Therefore, the aim of the present work was to encapsulate this oil in β-cyclodextrin nanosponges (NS) in order to overcome the above limitations. To fabricate nanosponges, β-cyclodextrin was cross-linked with diphenyl carbonate in different molar ratios viz. 1:2, 1:4, 1:6, 1:8, and 1:10. The blank nanosponges were loaded with BO using the freeze-drying method. The particle size of the BO loaded nanosponges was found to lie between 200 and 500 nm with low polydispersity index. Furthermore, the zeta potential, the Fourier transform infrared spectroscopy, X-ray diffraction, thermal analysis, and electron microscopy were carried out for characterization of BO nanosponges. Results obtained from spectral analysis ascertained the formation of inclusion complexes. Additionally, solubilisation efficiency of BO was checked in distilled water and found enhanced by 4.95 times with optimized β-cyclodextrin nanosponges. The cytotoxicity study was carried out by the MTT assay using HaCaT cell lines. A significant improvement in photo-stability of essential oil was also observed by inclusion innanosponges. Lastly, the optimized formulation was tested for antibacterial activity using Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Therefore, encapsulation of BO in nanosponges resulted in efficacious carrier system in terms of solubility, photo-stability, and safety of this oil along with handling benefits.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3