Iontophoretic Transdermal Delivery of Human Growth Hormone (hGH) and the Combination Effect of a New Type Microneedle, Tappy Tok Tok®

Author:

Noh Gyubin,Keum Taekwang,Seo Jo-Eun,Bashyal Santosh,Eum Nyeon-Sik,Kweon Min,Lee Sooyeun,Sohn Dong,Lee Sangkil

Abstract

Transdermal drug administration presents several advantages and it is therefore favorable as an alternative drug delivery route. However, transdermal delivery of biopharmaceutical drugs is made difficult by the skin barrier. Microneedle application and iontophoresis are strategies which can be used to overcome this barrier. Therefore, recombinant human growth hormone (rhGH) was used as a model macromolecular drug and was transdermally delivered using microneedle application and iontophoresis. Methylene blue staining, stereomicroscopy and scanning electron microscope (SEM) imaging were used to characterize the microchannels produced. To optimize the iontophoresis protocol, the effects of molecular charge and current density on transdermal delivery were evaluated in an in vitro permeation study using excised rat skin tissues. Using the optimized iontophoresis protocol, the combination effects of iontophoretic delivery via microchannels were evaluated in three different experimental designs. The flux obtained with anodal iontophoresis in citrate buffer was approximately 10-fold higher that that with cathodal iontophoresis in phosphate buffered saline (PBS). Flux also increased with current density in anodal iontophoresis. The combination of iontophoresis and microneedle application produced higher flux than single application. These results suggest that anodal iontophoresis with higher current density enhances the permeation of macromolecules through microchannels created by microneedles. In conclusion, the combination of iontophoresis and microneedles is a potential strategy for the enhancement of transdermal delivery of macromolecular drugs.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioavailability enhancement of sildenafil citrate via hydrogel-forming microneedle strategy in combination with cyclodextrin complexation;International Journal of Pharmaceutics;2024-04

2. Pharmacokinetics and Pharmacodynamics of Nanocarriers and Novel Drug Delivery Systems;Pharmacokinetics and Pharmacodynamics of Novel Drug Delivery Systems: From Basic Concepts to Applications;2024

3. Nanomedicine's delivery using microneedles;Design and Applications of Microneedles in Drug Delivery and Therapeutics;2024

4. Smart Responsive Microneedles for Controlled Drug Delivery;Molecules;2023-11-03

5. Anti-aging peptides for advanced skincare: Focus on nanodelivery systems;Journal of Drug Delivery Science and Technology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3