Anabolic Peptide-Enriched Stealth Nanoliposomes for Effective Anti-Osteoporotic Therapy

Author:

Salave SagarORCID,Rana Dhwani,Kumar HemantORCID,Kommineni Nagavendra,Benival Derajram

Abstract

The objective of the present work was to develop PTH (1-34)-loaded stealth nanoliposomes (PTH-LPs) by employing the use of the Quality by Design (QbD) approach. Risk identification was carried out using the Ishikawa fishbone diagram. PTH-LPs were optimized using Box Behnken Design, a type of response surface methodology to examine the effect of independent variables on dependent variables such as particle size and percentage entrapment efficiency (%EE). Design space was generated for PTH-LPs to reduce interbatch variability during the formulation development process. Furthermore, a cytotoxicity assay, cell proliferation assay, calcium calorimetric assay, mineralized nodule formation, and cellular uptake assay were carried out on MG-63 osteoblast-like cells. The results obtained from these procedures demonstrated that lipid concentration had a significant positive impact on particle size and %EE, whereas cholesterol concentration showed a reduction in %EE. The particle size and %EE of optimized formulation were found to be 147.76 ± 2.14 nm and 69.18 ± 3.62%, respectively. Optimized PTH-LPs showed the sustained release profile of the drug. In vitro cell evaluation studies showed PTH-LPs have good biocompatibility with MG-63 cells. The cell proliferation study revealed that PTH-LPs induced osteoblast differentiation which improved the formation of mineralized nodules in MG-63 cells. The outcome of the present study conclusively demonstrated the potential of the QbD concept to build quality in PTH-LPs with improved osteoanabolic therapy in osteoporosis.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference42 articles.

1. Osteoporosis;Compston;Lancet,2019

2. Salave, S., Rana, D., and Benival, D. Dual Targeting Anti-Osteoporotic Therapy through Potential Nanotherapeutic Approaches. Pharm. Nanotechnol., 2022.

3. Anabolic Treatment for Osteoporosis: Teriparatide;Eastell;Clin. Cases Miner. Bone Metab.,2017

4. Peptide Functionalised Nanocarriers for Bone Specific Delivery of PTH (1-34) in Osteoporosis;Salave;Curr. Nanomed.,2021

5. Teriparatide for Osteoporosis: Importance of the Full Course;Lindsay;Osteoporos. Int.,2016

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3