Influence of Roll Speed during Roll Compaction and Its Effect on the Prediction of Ribbon Solid Fraction

Author:

Lück Martin,De Saeger Matthias,Kleinebudde Peter

Abstract

Influence of the roll speed (RS) during roll compaction on ribbon, granule, tablet properties and its effect on the prediction of the ribbon solid fraction at-gap is often neglected or controversially discussed. The aim of this study was to investigate the effect of the RS systematically. Microcrystalline cellulose (MCC) and lactose were compressed at several maximum roll pressures (Pmax) and RS combinations using a gap-controlled roll compactor. The ribbon solid fraction after elastic recovery (SFribbon), granule size distribution and tabletability of the granules as well as the ribbon solid fraction at-gap SFgap were measured. The Midoux number (Mi), derived from the Johanson model, was used to predict the ribbon solid fraction at-gap (SFMi). The measured SFgap and the predicted SFMi lead to a prediction accuracy (PA) of the Midoux number. The results are highly dependent on the material used and the applied Pmax. Higher plasticity of the material leads to a reduction in SFribbon and granule size with increasing RS. However, this effect can be overcome or reduced by adjusting Pmax above the yield pressure of the used material. These results allow for higher roll speeds as a potential upscaling method in roll compaction. On the other side, the PA of the Midoux number was also reduced with increased RS for MCC and had no effect for lactose. Thus, RS seems to be an important factor in the prediction of roll compaction processes and prediction models should include RS as a parameter to improve their accuracy.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference32 articles.

1. Parikh, D.M. (2005). Handbook on Pharmaceutical Granulation, Taylor & Francis Group. [2nd ed.].

2. Improving process understanding in roll compaction;J. Pharm. Sci.,2021

3. Stress relaxation of compacts produced from viscoelastic materials;Int. J. Pharm.,1997

4. Studies on compacting and dry granulation;Pharm. Acta Helv.,1966

5. Mini review: Mechanisms to the loss of tabletability by dry granulation;Eur. J. Pharm. Biopharm.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3