Abstract
The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery.
Funder
the Austria COMET Program by the Austrian Federal Ministry of Climate Action, Environment, Energy, Mobility, Innovation, and Technology
the Austrian Federal Ministry of Labor and Economy
the Federal State of Styria and SFG
the Austrian FFG
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献