Gold Nanorod-Incorporated Halloysite Nanotubes Functionalized with Antibody for Superior Antibacterial Photothermal Treatment

Author:

Prinz Setter Ofer,Snoyman Iser,Shalash Ghazal,Segal EsterORCID

Abstract

The global spread of antibiotic-resistant strains, and the need to protect the microflora from non-specific antibiotics require more effective and selective alternatives. In this work, we demonstrate for the first time a superior antibacterial photothermal effect of plasmonic gold nanorods (AuNRs) via their incorporation onto natural clay halloysite nanotubes (HNTs), which were functionalized with anti-E. coli antibodies (Ab-HNTs). AuNRs were incorporated onto the Ab-HNTs through a facile freeze–thaw cycle, and antibody integrity following the incorporation was confirmed via infrared spectroscopy and fluorescence immunolabeling. The incorporation efficiency was studied using UV-Vis absorption and transmission electron microscopy (TEM). Mixtures of E. coli and AuNR-Ab-HNTs hybrids or free AuNRs were irradiated with an 808 nm laser at 3–4 W cm−2, and the resulting photothermal antibacterial activity was measured via plate count. The irradiated AuNR-Ab-HNTs hybrids exerted an 8-fold higher antibacterial effect compared to free AuNR under 3.5 W cm−2; whereas the latter induced a 6 °C-higher temperature elevation. No significant antibacterial activity was observed for the AuNR-Ab-HNTs hybrid against non-target bacteria species (Serratia marcescens and Staphylococcus epidermidis). These findings are ascribed to the localization of the photothermal ablation due to the binding of the antibody-functionalized clay to its target bacteria, as supported through TEM imaging. In the future, the HNTs-based selective carriers presented herein could be tailored with other antibacterial nanoparticles or against another microorganism via the facile adjustment of the immobilized antibody.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3