Polyurethane/Liquid Crystal Microfibers with pDNA Polyplex Loadings for the Optimal Release and Promotion of HUVEC Proliferation

Author:

Zhang Chaowen,Lu Lu,Ouyang Ruoran,Zhou Changren

Abstract

Fiber structures with connected pores resemble the natural extracellular matrix (ECM) in tissues, and show high potential for promoting the formation of natural functional tissue. The geometry of composite fibers produced by electrospinning is similar to that of the living-tissue ECM, in terms of structural complexity. The introduction of liquid crystals does not affect the morphology of fibers. The composite mat shows better hydrophilicity, with higher content of liquid crystal. At the same time, the higher the content of liquid crystal, the lower the modulus and tensile strength, and the higher the breaking energy and the elongation at break. Additionally, the factors affecting fibers are also investigated in this study. The addition of liquid crystals to the fibers’ matrix can slow down the release of pDNA, which is the most common vehicle for genetic engineering, and the encapsulation of pDNA polymer into the fiber matrix can maintain biological activity. The continued release of the pDNA complex was achieved in this study through liquid crystals, and the effective release is controllable. In addition, the integration of liquid crystals into fibers with pDNA polymers can cause a faster transfection rate and promote HUVEC (Human Umbilical Vein Endothelial Cells) growth. It is possible to combine electrospun fibers containing LC (liquid crystal) with pDNA condensation technology to achieve the goal of a sustained release. The production of inductable tissue-building equipment can manipulate the required signals at an effective level in the local tissue microenvironment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3