Degradation of Losartan Potassium Highlighted by Correlated Studies of Photoluminescence, Infrared Absorption Spectroscopy and Dielectric Spectroscopy

Author:

Paraschiv Mirela,Smaranda Ion,Zgura IrinaORCID,Ganea Paul,Chivu Madalina,Chiricuta Bogdan,Baibarac Mihaela

Abstract

In this paper, new results on the degradation of losartan potassium (LP, (1)), in the absence and presence of excipients, which was induced by UV light, the acid character of phosphate buffer solution (PBS) and alkaline medium, respectively, are reported through correlated studies of FTIR spectroscopy, photoluminescence and dielectric spectroscopy. The photoluminescence (PL) spectra of LP and the drug marked under the name Lorista (LO) are characterized by intense emission bands, peaking at 378 nm and 380 nm, respectively, accompanied by low intensity bands with a maximum at ~450–460 nm. Photodegradation of LO in a solid state is evidenced by a decrease in the intensity of the PL band at 380 nm, a variation that originates both in the adsorption of water vapors from the air and in the interaction of LP with excipients such as cornstarch, silicon dioxide and cellulose. The LP-water interaction is described, taking into account the main electrical parameters, i.e., complex dielectric permittivity and electrical conductivity. Photodegradation of LP and LO also induces an increase in the intensity of the emission band, at ~450–460 nm. The influence of acid and alkaline medium on the LO degradation is analyzed using phosphate buffer (PBS) and NaOH solutions, respectively. In both cases, a decrease in the intensity of the PL band, at 380 nm, is reported. The intensity diminution of the PL spectra of NaOH-reacted LP and LO is the result of the formation of the photodegradation product N-methanolamide-{[2′-(1H-tetrazol-5-yl)(1,1′-biphenyl)-4-yl]methyl} (2). This compound was proven by the studies of FTIR spectroscopy achieved on LP and NaOH-reacted LP. The appearance of the IR band at 1740 cm−1 and the increase in the absorbance in the IR band at 1423 cm−1 indicate that the photodegradation product (2) contains the C=O and C-OH functional groups.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3