PET Imaging of the Neurotensin Targeting Peptide NOTA-NT-20.3 Using Cobalt-55, Copper-64 and Gallium-68

Author:

Houson Hailey A.,Tekin Volkan,Lin WilsonORCID,Aluicio-Sarduy EduardoORCID,Engle Jonathan W.ORCID,Lapi Suzanne E.ORCID

Abstract

Introduction: Neurotensin receptor 1 (NTSR1) is an emerging target for imaging and therapy of many types of cancer. Nuclear imaging of NTSR1 allows for noninvasive assessment of the receptor levels of NTSR1 on the primary tumor, as well as potential metastases. This work focuses on a the neurotensin peptide analogue NT-20.3 conjugated to the chelator NOTA for radiolabeling for use in noninvasive positron emission tomography (PET). NOTA-NT-20.3 was radiolabeled with gallium-68, copper-64, and cobalt-55 to determine the effect that modification of the radiometal has on imaging and potential therapeutic properties of NOTA-NT-20.3. Methods: In vitro assays investigating cell uptake and subcellular localization of the radiolabeled peptides were performed using human colorectal adenocarcinoma HT29 cells. In vivo PET/CT imaging was used to determine the distribution and clearance of the peptide in mice bearing NTSR1 expressing HT29 tumors. Results: Cell uptake studies showed that the highest uptake was obtained with [55Co] Co-NOTA-NT-20.3 (18.70 ± 1.30%ID/mg), followed by [64Cu] Cu-NOTA-NT-20.3 (15.46 ± 0.91%ID/mg), and lastly [68Ga] Ga-NOTA-NT-20.3 (10.94 ± 0.46%ID/mg) (p < 0.001). Subcellular distribution was similar across the three constructs, with the membranous fraction containing the highest amount of radioactivity. In vivo PET/CT imaging of the three constructs revealed similar distribution and tumor uptake at the 1 h imaging timepoint. Tumor uptake was receptor-specific and blockable by co-injection of non-radiolabeled NOTA-NT-20.3. SUV ratios of tumor to heart at the 24 h imaging timepoint show that [55Co] Co-NOTA-NT-20.3 (20.28 ± 3.04) outperformed [64Cu] Cu-NOTA-NT-20.3 (6.52 ± 1.97). In conclusion, our studies show that enhanced cell uptake and increasing tumor to blood ratios over time displayed the superiority of [55Co] Co-NOTA-NT-20.3 over [68Ga] Ga-NOTA-NT-20.3 and [64Cu] Cu-NOTA-NT-20.3 for the targeting of NTSR1.

Funder

DOE University Isotope Network

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference33 articles.

1. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors;Maschauer;J. Labelled. Comp. Radiopharm.,2018

2. Targeting neurotensin receptors with agonists and antagonists for therapeutic purposes;Kitabgi;Curr. Opin. Drug Discov. Devel.,2002

3. Neurotensin and growth of normal and neoplastic tissues;Evers;Peptides,2006

4. Oncogenic role of neurotensin and neurotensin receptors in various cancers;Ouyang;Clin. Exp. Pharmacol. Physiol.,2017

5. Neurotensin receptors: A new marker for human ductal pancreatic adenocarcinoma;Reubi;Gut,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3