Understanding the Multidimensional Effects of Polymorphism, Particle Size and Processing for D-Mannitol Powders

Author:

Mareczek Lena,Riehl Carolin,Harms Meike,Reichl Stephan

Abstract

The relevance of the polymorphic form, particle size, and processing of mannitol for the mechanical properties of solid oral dosage forms was examined. Thus, particle and powder properties of spray granulated β D-mannitol, β D-mannitol, and δ D-mannitol were assessed in this study with regards to their manufacturability. D-mannitol is a commonly used excipient in pharmaceutical formulations, especially in oral solid dosage forms, and can be crystallized as three polymorphic forms, of which β is the thermodynamically most stable form and δ is a kinetically stabilized polymorph. A systematic analysis of the powders as starting materials and their respective roller compacted granules is presented to elucidate the multidimensional effects of powder and granules characteristics such as polymorphic form, particle size, and preprocessing on the resulting tablets’ mechanical properties. In direct compression and after roller compaction, δ polymorph displayed superior tableting properties over β mannitol, but was outperformed by spray granulated β mannitol. This could be primarily correlated to the higher specific surface area, leading to higher bonding area and more interparticle bonds within the tablet. Hence, it was shown that surface characteristics and preprocessing can prevail over the impact of polymorphism on manufacturability for oral solid dosage forms.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference49 articles.

1. Crystalline Polymorphism of Organic Compounds;Caira,1998

2. Pharmaceutical Applications of Polymorphism

3. Brittain Polymorphism in Pharmaceutical Solids;Hary,2009

4. Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development;Hilfiker,2019

5. The Influence of Lactose Pseudopolymorphic Form on Salbutamol Sulfate–Lactose Interactions in DPI Formulations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3