Conjugation of Hypericin to Gold Nanoparticles for Enhancement of Photodynamic Therapy in MCF-7 Breast Cancer Cells

Author:

Mokoena DimakatsoORCID,George Blassan P.ORCID,Abrahamse HeidiORCID

Abstract

Breast cancer, among the different types of cancer, is one of the most diagnosed cancers and the leading cause of mortalities amongst women. Factors, including genetic and epigenetic alterations in tumors, make it resistant to therapies, which results in treatment failures and/or recurrence. Furthermore, the existing therapies have many unfavorable side effects leading to poor prognosis and reduced therapeutic outcomes. Photodynamic therapy (PDT) is one of the most effective cancer therapies with increased selectivity and specificity toward cancer cells. As a result, the use of gold nanoparticles (AuNP) further improves the effectiveness of PDT by increasing the drug loading capacity into the cells. In this study, hypericin (Hyp) photosensitizer (PS) was adsorbed on gold nanoparticles (AuNPs) by sonication to achieve physical adsorption of the PS to AuNP. The resulting compound was characterized by FTIR, Zeta potential, UV-Vis spectroscopy, and TEM. The compound was used for the PDT treatment of MCF-7 human breast cancer in vitro. Cellular responses at 12 h post-PDT at 10 J/cm2 were observed. Cellular morphology, LDH membrane integrity, ATP luminescence assay, and Annexin V/PI staining were performed. The results demonstrated typical cell death morphological features while the biochemical responses indicated increased LDH and decreased ATP levels. In conclusion, this study presents an insight into the application of advanced PDT in breast cancer cells by inducing cancer cell death in vitro via apoptosis.

Funder

the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa

South African Medical Research Council

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3