Discovery and SAR Study of Quinoxaline–Arylfuran Derivatives as a New Class of Antitumor Agents

Author:

Fan Dongmei,Liu Pingxian,Jiang Yunhan,He Xinlian,Zhang Lidan,Wang Lijiao,Yang Tao

Abstract

A novel class of quinoxaline–arylfuran derivatives were designed, synthesized, and preliminarily evaluated for their antiproliferative activities in vitro against several cancer cell lines and normal cells. The representative derivative QW12 exerts a potent antiproliferative effect against HeLa cells (IC50 value of 10.58 μM), through inducing apoptosis and triggering ROS generation and the accumulation of HeLa cells in vitro. Western blot analysis showed that QW12 inhibits STAT3 phosphorylation (Y705) in a dose-dependent manner. The BLI experiment directly demonstrated that QW12 binds to the STAT3 recombination protein with a KD value of 67.3 μM. Furthermore, molecular docking investigation showed that QW12 specifically occupies the pY+1 and pY-X subpocket of the SH2 domain, thus blocking the whole transmission signaling process. In general, these findings indicated that the study of new quinoxaline–aryfuran derivatives as inhibitors of STAT3 may lead to new therapeutic medical applications for cancer in the future.

Funder

National Natural Science Foundation of China

West China Hospital, Sichuan University

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference36 articles.

1. Wild, C.P., Weiderpass, E., and Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention, 2020.

2. Review of precision cancer medicine: Evolution of the treatment paradigm;Nikanjam;Cancer Treat. Rev.,2020

3. Quinoxaline derivatives as a promising scaffold for breast cancer treatment;Eldin;New J. Chem.,2022

4. Synthesis and Molecular Docking Study of Novel Hybrids of 1,3,4-Oxadiazoles and Quinoxaline as a Potential Analgesic and Anti-Inflammatory Agents;Dewangan;J. Heterocycl. Chem.,2018

5. Synthesis, Spectroscopy Properties and Antifungal Activity of New Quinoxaline Derivatives;Zhu;Indian J. Heterocycl. Chem.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3