Ent-Peniciherqueinone Suppresses Acetaldehyde-Induced Cytotoxicity and Oxidative Stress by Inducing ALDH and Suppressing MAPK Signaling

Author:

Oh TaehoonORCID,Kwon Mincheol,Yu Jae Sik,Jang Mina,Kim Gun-Hee,Kim Ki HyunORCID,Ko Sung-KyunORCID,Ahn Jong SeogORCID

Abstract

Studies on ethanol-induced stress and acetaldehyde toxicity are actively being conducted, owing to an increase in alcohol consumption in modern society. In this study, ent-peniciherqueinone (EPQ) isolated from a Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 was found to reduce the acetaldehyde-induced cytotoxicity and oxidative stress in PC12 cells. EPQ increased cell viability in the presence of acetaldehyde-induced cytotoxicity in PC12 cells. In addition, EPQ reduced cellular reactive oxygen species (ROS) levels and restored acetaldehyde-mediated disruption of mitochondrial membrane potential. Western blot analyses revealed that EPQ treatment increased protein levels of ROS-scavenging heme oxygenase-1 and superoxide dismutase, as well as the levels of aldehyde dehydrogenase (ALDH) 1, ALDH2, and ALDH3, under acetaldehyde-induced cellular stress. Finally, EPQ reduced acetaldehyde-induced phosphorylation of p38 and c-Jun N-terminal kinase, which are associated with ROS-induced oxidative stress. Therefore, our results demonstrated that EPQ prevents cellular oxidative stress caused by acetaldehyde and functions as a potent agent to suppress hangover symptoms and alcohol-related stress.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3