Abstract
Phenolics from plant materials have garnered attention in nanomedicine research, due to their various medicinal properties. Caffeic acid, a phenolic compound that is abundant in coffee beans, has been proven to have anticancer effects, due to its reactive oxygen species (ROS)-inducing properties. Here, a supramolecular nanomedicine was designed using caffeic acid molecule and the synthetic anticancer drug bortezomib, via catechol–boronic acid conjugation and Fe(III) ion crosslinking. Bortezomib is a proteasome-inhibiting drug and its boronic acid functional group can bind to caffeic acid’s catechol moiety. By having a nanoparticle formulation that can deliver bortezomib via intracellular endocytosis, the catechol–boronic acid conjugation can be dissociated, which liberates the boronic acid functional group to bind to the 26S proteasome of the cell. The ROS-inducing property of caffeic acid also complements the bortezomib payload, as the latter suppresses the survival mechanism of the cell through NF-κB inhibition.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献