Curcumin In Situ Gelling Polymeric Insert with Enhanced Ocular Performance

Author:

Abdelkader HamdyORCID,Wertheim DavidORCID,Pierscionek Barbara,Alany Raid G.ORCID

Abstract

The search for an ocular drug delivery system that could provide long-acting effects without a detriment to the anatomy and physiology of the eye remains a challenge. Polyphenolic compounds (curcumin in particular) have recently gained popularity due to their powerful antioxidant properties; yet curcumin suffers poor stability and water solubility. A conventional eye drop formulation of curcumin in the form of a suspension is likely to suffer a short duration of action requiring multiple instillations. On the other hand, polymeric in-situ gelling inserts offer the prospect of overcoming these limitations. The aim of this study was to prepare, characterize and evaluate in vivo, polymeric, in-situ gelling and mucoadhesive inserts for ocular surface delivery of curcumin. Different types and ratios of biocompatible polymers (HPMC, CMC, PL 127 and PVA) and three plasticizers along with the solvent casting method were adopted to prepare curcumin inserts. The inserts were investigated for their physicochemical characteristics, applicability, and suitability of use for potential placement on the ocular surface. The prepared inserts revealed that curcumin was mainly dispersed in the molecular form. Insert surfaces remained smooth and uniform without cracks appearing during preparation and thereafter. Improved mechanical and mucoadhesive properties, enhanced in vitro release (7.5- to 9-fold increases in RRT300 min) and transcorneal permeation (5.4- to 8.86-fold increases in Papp) of curcumin was achieved by selected in-situ gelling inserts compared to a control curcumin suspension. The developed inserts demonstrated acceptable ocular tolerability, enhanced corneal permeability, and sustained release of curcumin along with retention of insert formulation F7 on the ocular surface for at least two-hours. This insert provides a viable alternative to conventional eye drop formulations of curcumin.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3