Comparison of Downstream Processing of Nanocrystalline Solid Dispersion and Nanosuspension of Diclofenac Acid to Develop Solid Oral Dosage Form

Author:

Jadhav Sanika,Kaur Amanpreet,Bansal Arvind Kumar

Abstract

The conventional “top-down”, “bottom-up” and “combination” approaches of generating drug nanocrystals produce a “nanosuspension” (NS). It requires significant downstream processing for drying the liquid by suitable means followed by its granulation to develop an oral solid dosage form (OSD). In this paper, we used a novel, spray drying-based NanoCrySP technology for the generation of drug nanocrystals in the form of nanocrystalline solid dispersion (NCSD). We hypothesized that the NCSD would require minimal downstream processing since the nanocrystals are obtained in powder form during spray drying. We further compared downstream processing of NS and NCSD of diclofenac acid (DCF) prepared by wet media milling and NanoCrySP technology, respectively. The NS and NCSD were characterized for crystallinity, crystal size, assay and dissolution. The NCSD was physically mixed with 0.3% Aerosil® 200, 1.76% croscarmellose sodium (CCS) and 0.4% sodium stearyl fumarate (SSF) and filled into size 0 hard gelatin capsules. The NS was first wet granulated using Pearlitol® SD 200 (G1 granules) and Celphere® 203 (G2 granules) in a fluidized bed processor, and the resulting granules were mixed using the same extra granular excipients as NCSD and filled into capsules. A discriminatory dissolution method was developed to monitor changes in dissolution behavior due to crystal growth during processing. Cost analysis and comparison of process efficiency was performed using an innovation radar tool. The NS and NCSD were successfully fabricated with a crystal size of 363 ± 21.87 and 361.61 ± 11.78, respectively. In comparison to NCSD-based capsules (65.13%), the G1 and G2 granules showed crystal growth and decrease in dissolution to 52.68% and 48.37%, respectively, in 120 min. The overall cost for downstream processing of NCSD was up to 80% lower than that of NS. An innovation radar tool also concluded that the one-step NanoCrySP technology was more efficient and required less downstream processing than the two-step wet media milling approach for conversion of nanocrystals to OSD.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3