1,1-Difluoroethane Detection Time in Blood after Inhalation Abuse Estimated by Monte Carlo PBPK Modeling

Author:

Huet RaulORCID,Johanson GunnarORCID

Abstract

(1) Background: Inhalant abuse and misuse are still widespread problems. 1,1-Difluoroethane abuse is reported to be potentially fatal and to cause acute and chronic adverse health effects. Lab testing for difluoroethane is seldom done, partly because the maximum detection time (MDT) is unknown. We sought to reliably estimate the MDT of difluoroethane in blood after inhalation abuse; (2) Methods: MDT were estimated for the ad ult male American population using a physiologically based pharmacokinetic (PBPK) model and abuse patterns detailed by two individuals. Based on sensitivity analyses, variability in huffing pattern and body mass index was introduced in the model by Monte Carlo simulation; (3) Results: With a detection limit of 0.14 mg/L, the median MDT was estimated to be 10.5 h (5th–95th percentile 7.8–12.8 h) after the 2-h abuse scenario and 13.5 h (10.5–15.8 h) after the 6-h scenario. The ranges reflect variability in body mass index (and, hence, amount of body fat) and, more so, variable inhalation patterns; (4) Conclusions: Our simulations suggest that the MDT of difluoroethane in blood after abuse ranges from 7.8 to 15.8 h. Although shorter compared to many other drugs, these MDT are sufficient to allow for testing several hours after suspected intoxication in a patient.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference50 articles.

1. Monitoring the Future. National Survey Results on Drug Use, 1975–2019. Volume I, Secondary School Students http://www.monitoringthefuture.org//pubs/monographs/mtf-vol1_2019.pdf

2. Inhalant Abuse and Dependence Among Adolescents in the United States

3. Psychiatric disorders in inhalant users: Results from The National Epidemiologic Survey on Alcohol and Related Conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3