Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy

Author:

Carissimi GuzmánORCID,Montalbán Mercedes G.ORCID,Víllora Gloria,Barth AndreasORCID

Abstract

Nanotechnology has enabled the development of novel therapeutic strategies such as targeted nanodrug delivery systems, control and stimulus-responsive release mechanisms, and the production of theranostic agents. As a prerequisite for the use of nanoparticles as drug delivery systems, the amount of loaded drug must be precisely quantified, a task for which two approaches are currently used. However, both approaches suffer from the inefficiencies of drug extraction and of the solid-liquid separation process, as well as from dilution errors. This work describes a new, reliable, and simple method for direct drug quantification in polymeric nanoparticles using attenuated total reflection Fourier transform infrared spectroscopy, which can be adapted for a wide variety of drug delivery systems. Silk fibroin nanoparticles and naringenin were used as model polymeric nanoparticle carrier and drug, respectively. The specificity, linearity, detection limit, precision, and accuracy of the spectroscopic approach were determined in order to validate the method. A good linear relation was observed within 0.00 to 7.89% of naringenin relative mass with an R2 of 0.973. The accuracy was determined by the spike and recovery method. The results showed an average 104% recovery. The limit of detection and limit of quantification of the drug loading content were determined to be 0.3 and 1.0%, respectively. The method’s robustness is demonstrated by the notable similarities between the calibrations carried out using two different equipment setups at two different institutions.

Funder

European Commission

Universidad de Murcia

Knut och Alice Wallenbergs Stiftelse

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference58 articles.

1. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date

2. Insoluble drug delivery strategies: review of recent advances and business prospects

3. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems

4. Biopolymeric Nanoparticle Synthesis in Ionic Liquids;Montalbán,2018

5. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs;Matsumura;Cancer Res.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3