Author:
Rubin Katarina,Ewing Pär,Bäckström Erica,Abrahamsson Anna,Bonn Britta,Kamata Satoshi,Grime Ken
Abstract
Significant pulmonary metabolism of inhaled drugs could have drug safety implications or influence pharmacological effectiveness. To study this in vitro, lung microsomes or S9 are often employed. Here, we have determined if rat and human lung microsomes are fit for purpose or whether it is better to use specific cells where drug-metabolizing enzymes are concentrated, such as alveolar type II (ATII) cells. Activities for major hepatic and pulmonary human drug-metabolizing enzymes are assessed and the data contextualized towards an in vivo setting using an ex vivo isolated perfused rat lung model. Very low rates of metabolism are observed in incubations with human ATII cells when compared to isolated hepatocytes and fewer of the substrates are found to be metabolized when compared to human lung microsomal incubations. Reactions selective for flavin-containing monooxygenases (FMOs), CYP1B1, CYP2C9, CYP2J2, and CYP3A4 all show significant rates in human lung microsomal incubations, but all activities are higher when rat lung microsomes are used. The work also demonstrates that a lung microsomal intrinsic clearance value towards the lower limit of detection for this parameter (3 µL/min/mg protein) results in a very low level of pulmonary metabolic clearance during the absorption period, for a drug dosed into the lung in vivo.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献