Bottom-Up Physiologically Based Oral Absorption Modeling of Free Weak Base Drugs

Author:

Matsumura Naoya,Ono Asami,Akiyama Yoshiyuki,Fujita TakuyaORCID,Sugano KiyohikoORCID

Abstract

In this study, we systematically evaluated “bottom-up” physiologically based oral absorption modeling, focusing on free weak base drugs. The gastrointestinal unified theoretical framework (the GUT framework) was employed as a simple and transparent model. The oral absorption of poorly soluble free weak base drugs is affected by gastric pH. Alternation of bulk and solid surface pH by dissolving drug substances was considered in the model. Simple physicochemical properties such as pKa, the intrinsic solubility, and the bile micelle partition coefficient were used as input parameters. The fraction of a dose absorbed (Fa) in vivo was obtained by reanalyzing the pharmacokinetic data in the literature (15 drugs, a total of 85 Fa data). The AUC ratio with/without a gastric acid-reducing agent (AUCr) was collected from the literature (22 data). When gastric dissolution was neglected, Fa was underestimated (absolute average fold error (AAFE) = 1.85, average fold error (AFE) = 0.64). By considering gastric dissolution, predictability was improved (AAFE = 1.40, AFE = 1.04). AUCr was also appropriately predicted (AAFE = 1.54, AFE = 1.04). The Fa values of several drugs were slightly overestimated (less than 1.7-fold), probably due to neglecting particle growth in the small intestine. This modeling strategy will be of great importance for drug discovery and development.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference100 articles.

1. Custom manufacturers take on DRUG SOLUBILITY ISSUES to help pharmaceutical firms move products through development;Thayer;Chem. Eng. News,2010

2. Solubility and dissolution profile assessment in drug discovery;Sugano;Drug Metab. Pharmacokinet.,2007

3. Six years of progress in the oral biopharmaceutics area—A summary from the IMI OrBiTo project;Abrahamsson;Eur. J. Pharm. Biopharm.,2020

4. Introduction to computational oral absorption simulation;Sugano;Expert Opin. Drug Metab. Toxicol.,2009

5. Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications;Sugano,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3