Photostability Testing of a Third-Generation Retinoid—Tazarotene in the Presence of UV Absorbers

Author:

Kryczyk-Poprawa AgataORCID,Zupkó IstvánORCID,Bérdi Péter,Żmudzki PawełORCID,Popiół JustynaORCID,Muszyńska BożenaORCID,Opoka Włodzimierz

Abstract

Exposure of a drug to UV irradiation could affect its physicochemical properties. Hence, photostability testing is essential for topically administered drugs. Tazarotene, a receptor-selective, third-generation retinoid, is commonly used to treat acne vulgaris and psoriasis. In the present study, an in-depth analysis of the photostability of tazarotene in ethanolic solution in the presence of zinc oxide and/or titanium dioxide as well as benzophenone-type UV filters was performed. Eleven presumed products were derived from the photocatalytic degradation of tazarotene using ultra-performance liquid chromatography–tandem mass spectrometry, and transformation pathways were proposed. The degradation process mainly affected the 4,4-dimethyl-3,4-dihydro-2H-thiopyran moiety. The fragments most susceptible to oxidation were the methyl groups and the sulfur atom. Moreover, in the presence of sulisobenzone, under UV irradiation, tazarotene was subjected to a degradation process, which resulted in two photodecomposition products. In silico studies performed by OSIRIS Property Explorer demonstrated that five of the degradation products could be harmful in terms of the reproductive effects, which are associated with 3,4-dihydro-6-methyl-2H-1-benzothiopyran 1,1-dioxide, while one of them demonstrated potential irritant activity. The cytotoxic properties of the degradation products of tazarotene were assessed by MTT assay on a panel of human adherent cancer cells. Time- and concentration-dependent growth inhibition was evidenced in ovary (A2780) and breast (MDA-MB-231) cancer cell lines. The potential implication of the outcomes of the present research requires further studies mainly concerning the photostability of tazarotene in the topical formulations.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3