The Challenge of Die Filling in Rotary Presses—A Systematic Study of Material Properties and Process Parameters

Author:

Schomberg Ann KathrinORCID,Kwade ArnoORCID,Finke Jan HenrikORCID

Abstract

For the efficient and safe production of pharmaceutical tablets, a deep process understanding is of high importance. An essential process step during tableting is the die filling, as it is responsible for a consistent tablet weight and drug content. Furthermore, it affects the results of subsequent process steps, compaction and ejection, and thus critical quality attributes. This study focuses on understanding the influences of process parameters and material properties on die filling on a rotary tablet press. By the systematic variation in process parameters as the turret and paddle speeds as well as the fill and dosing depths, five formulations with differing properties are processed. Analysis of the normalized tablet weight, called filling yield, revealed different limitation mechanisms of the filling process, i.e., incomplete filled dies for certain parameter settings. Kinetic limitations occur due to a short residence time under the feed frame (filling time) caused by high turret speeds, which additionally induce high tablet weight variation coefficients. Characteristic maximum turret speeds at certain paddle speeds can be found to still achieve complete filling. At low turret speeds, densification of the powder inside the dies takes place, induced by two mechanisms: either high paddle speeds or high overfill ratios, or a combination of both. The challenge to fill the dies completely as well as avoid densification is dependent on material properties as the flowability. The mass discharge rate from an orifice was found to be in a linear correlation to the filling results of different formulations below complete filling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3