Dual Peptide-Modified Nanoparticles Improve Combination Chemotherapy of Etoposide and siPIK3CA Against Drug-Resistant Small Cell Lung Carcinoma

Author:

Huang Hsin-Lin,Lin Wen Jen

Abstract

Small cell lung carcinoma (SCLC) is a highly aggressive form of malignancy with rapid recurrence and poor prognosis. The dual peptide-modified nanoparticles (NPs) for improving chemotherapy against drug-resistant small cell lung carcinoma cells has been developed. In this study, the SCLC targeting ligand, antagonist G peptide (AG), and cell-penetrating peptide, TAT, modified NPs were used to encapsulate both anticancer drugs etoposide (ETP) and PIK3CA small-interfering RNA (siPIK3CA). The ETP@NPs and siRNA@NPs had particle size 201.0 ± 1.9–206.5 ± 0.7 nm and 155.3 ± 12.4–169.1 ± 11.2 nm, respectively. The lyophilized ETP@NPs and siRNA@NPs maintained their particle size and zeta potential during 28-day storage without severe aggregation or dissociation. Either ETP@NPs or siRNA@NPs significantly reduced the IC50 of drugs by 2.5–5.5 folds and 2.4–3.9 folds, respectively, as compared to free ETP and siRNA/PEI nanocomplex in drug-resistant CD133(+) H69 cells. Herein, the IC50 of dual-peptide modified ETP@NPs and siRNA@NPs were prominently lower than single-peptide modified NPs. The synergistic effect (CI < 1) was further observed in co-treatment of ETP and siPIK3CA particularly delivered by dual-peptide modified NPs.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3