Indocyanine-Green-Loaded Liposomes for Photodynamic and Photothermal Therapies: Inducing Apoptosis and Ferroptosis in Cancer Cells with Implications beyond Oral Cancer

Author:

Liao Wei-Ting12,Chang Dao-Ming3ORCID,Lin Meng-Xian1,Lee Jeng-Woei4,Tung Yi-Chung3ORCID,Hsiao Jong-Kai12ORCID

Affiliation:

1. Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan

2. School of Medicine, Tzu Chi University, Hualien 97004, Taiwan

3. Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

4. Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan

Abstract

Oral cancer represents a global health burden, necessitating novel therapeutic strategies. Photodynamic and photothermal therapies using indocyanine green (ICG) have shown promise due to their distinctive near-infrared (NIR) light absorption characteristics and FDA-approved safety profiles. This study develops ICG-loaded liposomes (Lipo-ICGs) to further explore their potential in oral cancer treatments. We synthesized and characterized the Lipo-ICGs, conducted in vitro cell culture experiments to assess cellular uptake and photodynamic/photothermal effects, and performed in vivo animal studies to evaluate their therapeutic efficacy. Quantitative cell apoptosis and gene expression variation were further characterized using flow cytometry and RNA sequencing, respectively. Lipo-ICGs demonstrated a uniform molecular weight distribution among particles. The in vitro studies showed a successful internalization of Lipo-ICGs into the cells and a significant photodynamic treatment effect. The in vivo studies confirmed the efficient delivery of Lipo-ICGs to tumor sites and successful tumor growth inhibition following photodynamic therapy. Moreover, light exposure induced a time-sensitive photothermal effect, facilitating the further release of ICG, and enhancing the treatment efficacy. RNA sequencing data showed significant changes in gene expression patterns upon Lipo-ICG treatment, suggesting the activation of apoptosis and ferroptosis pathways. The findings demonstrate the potential of Lipo-ICGs as a therapeutic tool for oral cancer management, potentially extending to other cancer types.

Funder

Tzu Chi University

National Science and Technology Council

Taipei Tzu Chi Hospital

Academia Sinica

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference34 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer J. Clin.,2021

2. Cancer Statistics;Siegel;CA Cancer J. Clin.,2021

3. Evaluation of the benefit and use of multidisciplinary teams in the treatment of head and neck cancer;Licitra;Oral Oncol.,2016

4. Photodynamic therapy of head and neck cancers;Biel;Methods Mol. Biol.,2010

5. Indocyanine green: Physical and physiologic properties;Fox;Mayo Clin. Proc.,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3